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Abstract — Cloud is providing 3 types of services IaaS, 

PaaS and SaaS. Software as a Service (SaaS) is a software 

distribution model in which applications are hosted by a 

vendor or service provider and made available to customers 

over a network, typically the Interne. However, due to their 

sharing nature, SaaS clouds are vulnerable to malicious 

attacks SaaS cloud systems enable application service 

providers to deliver their applications via massive cloud 

computing infrastructures.. In this paper, we present IntTest, 

a scalable and effective service integrity attestation 

framework for SaaS clouds. IntTest provides a novel 

integrated attestation graph analysis scheme that can provide 

stronger attacker pinpointing power than previous schemes. 

Moreover, IntTest can automatically enhance result quality 

by replacing bad results produced by malicious attackers 

with good results produced by benign service providers. We 

have implemented a prototype of the IntTest system and 

tested it on a production cloud computing infrastructure 

using IBM System S stream processing applications. Our 

experimental results show that IntTest can achieve higher 

attacker pinpointing accuracy than existing approaches. 

IntTest does not require any special hardware or secure 

kernel support and imposes little performance impact to the 

application, which makes it practical for large-scale cloud 

systems. 
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I. INTRODUCTION 

The cloud computing concept is simple: it enables you to 

run computer applications over the Internet, removing the 

need to buy, install or manage your own servers. You can 

simply run your company's IT operations with just a browser 

and an Internet connection .Cloud computing has emerged 

as a cost-effective resource leasing paradigm, which 

obviates the need for users maintain complex physical 

computing infrastructures by themselves. Software-as-a-

service (SaaS) clouds (e.g., Amazon Web Service (AWS) 

[1] and Google AppEngine [2]) build upon the concepts of 

software as a service [3] and service-oriented architecture 

(SOA) [4], [5], which enable application service providers 

(ASPs) to deliver their applications via the massive cloud 

computing infrastructure. In particular, our work focuses on 

data stream processing services [6], [7], [8] that are 

considered to be one class of killer applications for clouds 

with many real-world applications in security surveillance, 

scientific computing, and business intelligence. However, 

cloud computing infrastructures are often shared by ASPs 

from different security domains, which make them 

vulnerable to malicious attacks [9], [10]. For example, 

attackers can pretend to be legitimate service providers to 

provide fake service components, and the service 

components provided by benign service providers may 

include security holes that can be exploited by attackers. Our 

work focuses on service integrity attacks that cause the user 

to receive untruthful data processing results, illustrated by 

Fig. 1. Although confidentiality and privacy protection 

problems have been extensively studied by previous 

research [11], [12], [13], [14], [15], [16], the service 

integrity attestation problem has not been properly 

addressed. Moreover, service integrity is the most prevalent 

problem, which needs to be addressed no matter whether 

public or private data are processed by the cloud system. 

Although previous work has provided various software 

integrity attestation solutions [9], [10], [11],[12], those 

techniques often require special trusted hardware or secure 

kernel support, which makes them difficult to be deployed 

on large-scale cloud computing infrastructures. Traditional 

Byzantine fault tolerance (BFT) techniques [14], [15] can 
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detect arbitrary misbehaviors using full-time majority voting 

(FTMV) over all replicas, which however incur high 

overhead to the cloud system.  

 

In this paper, we present IntTest, a new integrated service 

integrity attestation framework for multitenant cloud 

systems. IntTest provides a practical service integrity 

attestation scheme that does not assume trusted entities on 

third-party service provisioning sites or require application 

modifications. IntTest builds upon our previous work 

RunTest [16] and AdapTest [7] but can provide stronger 

malicious attacker pinpointing power than RunTest and 

AdapTest. Specifically, RunText and AdapTest as well as 

traditional majority voting schemes need to assume that 

benign service providers take majority in every service 

function. However, in large-scale multitenant cloud systems, 

multiple malicious attackers may launch colluding attacks 

on certain targeted service functions to invalidate the 

assumption. To address the challenge, IntTest takes aholistic 

approach by systematically examining both consistency and 

inconsistency relationships among different service 

providers within the entire cloud system.  

 

 

Fig. 1. Service integrity attack in cloud-based data 

processing. Si denotes different service component and 

VM denotes virtual machines 

 

The per-function consistency raph analysis can limit the 

scope of damage caused by colluding attackers, while the 

global inconsistency graph analysis can effectively expose 

those attackers that try to compromise many service 

functions. Hence, IntTest can still pinpoint malicious 

attackers even if they become majority for some service 

functions. By taking an integrated approach, IntTest can not 

only pinpoint attackers more efficiently but also can 

suppress aggressive attackers and limit the scope of the 

damage caused by colluding attacks. Moreover, IntTest 

provides result auto correction that can automatically replace 

corrupted data processing results produced by malicious 

attackers with good results produced by benign service 

providers. Specifically, this paper makes the following 

contributions: 

 

 We provide a scalable and efficient distributed service 

integrity attestation framework for large scale cloud 

computing infrastructures. 

 

 We present a novel integrated service integrity 

attestation scheme that can achieve higher pinpointing 

accuracy than previous techniques.  

 

 We describe a result auto correction technique that can 

automatically correct the corrupted results produced by 

malicious attackers. 

 

 We conduct both analytical study and experimental 

evaluation to quantify the accuracy and overhead of the 

integrated service integrity attestation scheme. 

 

We have implemented a prototype of the IntTest system and 

tested it on NCSU’s virtual computing lab (VCL) [8], a 

production cloud computing infrastructure that operates in a 

similar way as the Amazon elastic compute cloud (EC2) [9]. 

The benchmark applications we use to evaluate IntTest are 

distributed data stream processing services provided by the 

IBM System S stream processing platform [8], [3], an 

industry strength data stream processing system. 

Experimental results show that IntTest can achieve more 

accurate pinpointing than existing schemes (e.g., RunTest, 

AdapTest, and full-time majority voting) under strategically 

colluding attacks. IntTest is scalable and can reduce the 
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attestation overhead by more than one order of magnitude 

compared to thetraditional full-time majority voting scheme. 

II. PROBLEM STATEMENT 

 

Given a SaaS cloud system, the goal of IntTest is to pinpoint 

any malicious service provider that offers an untruthful 

service function. IntTest treats all service components as 

black boxes, which does not require any special hardware or 

secure kernel support on the cloud platform. We now 

describe our attack model and our key assumptions as 

follows:   

 

Attack model. A malicious attacker can pretend to be a 

legitimate service provider or take control of vulnerable 

service providers to provide untruthful service functions. 

Malicious attackers can be stealthy, which means they can 

misbehave on a selective subset of input data or service 

functions while pretending to be benign service providers on 

other input data or functions. The stealthy behavior makes 

detection more challenging due to the following reasons:  

 

 The detection scheme needs to be hidden from the 

attackers to prevent attackers from gaining knowledge 

on the set of data processing results that will be verified 

and therefore easily escaping detection; and  

 

 The detection scheme needs to be scalable while being 

able to capture misbehavior that may be both 

unpredictable and occasional. 

 

In a large-scale cloud system, we need to consider colluding 

attack scenarios where multiple malicious attackers collude 

or multiple service sites are simultaneously compromised 

and controlled by a single malicious attacker. Attackers 

could sporadically collude, which means an attacker can 

collude with an arbitrary subset of its colluders at any time. 

We assume that malicious nodes have no knowledge of 

other nodes except those they interact with directly. 

However, attackers can communicate with their colluders in 

an arbitrary way. Attackers can also change their attacking 

and colluding strategies arbitrarily.  Assumptions we first 

assume that the total number of malicious service 

components is less than the total number of benign ones in 

the entire cloud system. Without this assumption, it would 

be very hard, if not totally impossible, for any attack 

detection scheme to work when comparable ground truth 

processing results are not available. 

 

Fig.2. Replay-based consistency check. 

 

However, different from RunTest, AdapTest, or any 

previous majority voting schemes, IntTest does not assume 

benign service components have to be the majority for every 

service function, which will greatly enhance our pinpointing 

power and limit the scope of service functions that can be 

compromised by malicious attackers. Second, we assume 

that the data processing services are input-deterministic, that 

is, given the same input, a benign service component always 

produces the same or similar output (based on a user-defined 

similarity function). Many data stream processing functions 

fall into this category [8]. We can also easily extend our 

attestation framework to support stateful data processing 

services [8], which however is outside the scope of this 

paper. Third, we also assume that the result inconsistency 

caused by hardware or software faults can be marked by 

fault detection schemes [3] and are excluded from our 

malicious attack detection.  

III. RELATED WORK 

 

To detect service integrity attack and pinpoint malicious 

service providers, our algorithm relies on replay-based 

consistency check to derive the consistency/inconsistency 

relationships between service providers. For example, Fig. 2 

shows the consistency check scheme for attesting three 

service provider’s p1, p 2, and p 3 that offer the same 

service function f. The portal sends the original input data d1 

to p1 and gets back the result f(d1). Next, the portal sends 

d0, a duplicate of d1 to p3 and gets back the result f(d0). 

 

The portal then compares f(d1) and f(d0)  to see whether p1 

and p3 are consistent. The intuition behind our approach is 

that if two service providers disagree with each other on the 

processing result of the same input, at least one of them 

should be malicious. Note that we do not send an input data 
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item and its duplicates (i.e., attestation data) concurrently. 

Instead, we replay the attestation data on different service 

providers after receiving the processing result of the original 

data. Thus, the malicious attackers cannot avoid the risk of 

being detected when they produce false results on the 

original data. Although the replay scheme may cause delay 

in a single tuple processing, we can overlap the attestation 

and normal processing of consecutive tuples in the data 

stream to hide the attestation delay from the user. If two 

service providers always give consistent output results on all 

input data, there exists consistency relationship between 

them. Otherwise, if they give different outputs on at least 

one input data, there is inconsistency relationship between 

them. We do not limit the consistency relationship to 

equality function since two benign service providers may 

produce similar but not exactly the same results. For 

example, the credit scores for the same person may vary by 

a small difference when obtained from different credit 

bureaus. We allow the user to define a distance function to 

quantify the biggest tolerable result difference. 

 

Definition 1. For two output results, r1 and r2, which come 

from two functionally equivalent service providers, 

respectively, result consistency is defined as either r1 = r2, 

or the distance between r1 and r2 according to user-defined 

distance function D(r1,r2) falls within a threshold ɗ. 

 

For scalability, we propose randomized probabilistic 

attestation, an attestation technique that randomly replays a 

subset of input data for attestation. For composite data-flow 

processing services consisting of multiple service hops, each 

service hop is composed of a set of unction ally equivalent 

service providers. Specifically, for an upcoming tuple di, the 

portal may decide to perform integrity attestation with 

probability pu. If the portal decides to perform attestation on 

di, the portal first sends di to a pre-defined service path p1 ‒–

›p2 • • • • –––› pl   providing functions f1 ‒–› f2• • • •––› fl. After 

receiving the processing result for di, the portal replays the 

duplicates of di, on alternative service path(s) such as ṕ1‒–› 

ṕ2• • • • • ––› ṕj providing functions fj as ṕj. The portal may 

perform data replay on multiple service providers to perform 

concurrent attestation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Attestation graphs. 

 

With replay-based consistency check, we can test 

functionally equivalent service providers and obtain their 

consistency and inconsistency relationships. Fig.3. 

Attestation graphs both the we employ consistency graph 

and inconsistency graph to aggregate pairwise attestation 

results for further analysis. The graphs reflect the 

consistency/inconsistency relationships across multiple 

service providers over a period of time. Before introducing 

the attestation graphs, we first define consistency links and 

inconsistency links. 

 

Definition 2. A consistency link exists between two service 

providers who always give consistent output for the same 

input data during attestation. An inconsistency link exists 

between two service providers who give at least one 

inconsistent output for the same input data during 

attestation. 

We then construct consistency graphs for each function to 

capture consistency relationships among the service 

providers provisioning the same function. Fig 3 (a) shows 

the consistency graphs for two functions. Note that two 

service providers that are consistent for one function are not 

necessarily consistent for another function. This is the 

reason why we confine consistency graphs within individual 

functions.  
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Definition 3. A per-function consistency graph is an 

undirected graph, with all the attested service providers that 

provide the same service function as the vertices and 

consistency links as the edges. 

We use a global inconsistency graph to capture 

inconsistency relationships among all service providers. 

Two service providers are said to be inconsistent as long as 

they disagree in any function. Thus, we can derive more 

comprehensive inconsistency relationships by integrating 

inconsistency links across functions. Fig. 3(b) shows an 

example of the global inconsistency graph. Note that service 

provider p5 provides both functions f1 and f2. In the 

inconsistency graph, there is a single node p5 with its links 

reflecting inconsistency relationships in both functions f1 

and f2. 

 

Definition 4. The global inconsistency graph is an 

undirected graph, with all the attested service providers in 

the system as the vertex set and inconsistency links as the 

edges. The portal node is responsible for constructing and 

maintaining both per-function consistency graphs and the 

global inconsistency graph. To generate these graphs, the 

portal maintains counters for the number of consistency 

results and counters for the total number of attestation data 

between each pair of service providers.  

 

IV. RESULTS AND ANALYSIS 

 

We first investigate the accuracy of our scheme in 

pinpointing malicious service providers. Fig. 4(a) compares 

our scheme with the other alternative schemes (i.e., FTMV, 

PTMV, and RunTest) when malicious service providers 

aggressively attack different number of service functions. 

Inthis set of experiments, we have 10 service functions and 

30 service providers. The number of service providers in 

each service function randomly ranges in [1, 8].     

 

 

Fig 4.Malicious attackers pinpointing accuracy comparison with 

20 percent service providers being malicious. 

 

Each benign service provider provides two randomly 

selected service functions. The data rate of the input 

stream is 300 tuples per second. We set 20 percent of 

service providers as malicious. After the portal receives 

the processing result of a new data tuple, it randomly 

decides whether to perform data attestation. Each tuple 

has 0.2 probability of getting attested (i.e., attestation 

probability Pu ¼ 0:2), and two attestation data replicas are 

used (i.e., number of total data copies including the 

original data r ¼ 3). Each experiment is repeated three 

times. We report the average detection rate and false 

alarm rate achieved by different schemes. Note that 

RunTest can achieve the same detection accuracy results 

as the majority voting based schemes after the 

randomized probabilistic attestation covers all attested 

service providers and discovers the majority clique [6]. 

In contrast, IntTest comprehensively examines both 

perfection consistency graphs and the global 

inconsistency graph to make the final pinpointing 

decision. We observe that IntTest can achieve much 

higher detection rate and lower false alarm rate than 

other alternatives. Moreover, IntTest can achieve better 

detection accuracy when malicious service providers 

attack more functions. We also observe that when 

malicious service providers attack aggressively, our 

scheme can detect them even though they attack a low 

percentage of service functions Fig. 4(b) shows the 

malicious service provider detection accuracy results under 

the conservative attack scenarios. All the other experiment 

parameters are kept the same as the previous experiments. 

The results show that IntTest can consistently achieve higher 

detection rate and lower false alarm rate than the other 

alternatives. In the conservative attack scenario, as shown by 
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fig. 4(b), the false alarm rate of IntTest first increases when 

a small percentage of service functions are attacked and then 

drops to zero quickly with more service functions are 

attacked. This is because when attackers only attack a few 

service functions where they can take majority; they can 

hide themselves from our detection scheme while tricking 

our algorithm into labeling benign service providers as 

malicious. However, if they attack more service functions, 

they can be detected since they incur more inconsistency 

links with benign service providers in the global 

inconsistency graph. Note that majority voting-based 

schemes can also detect malicious attackers if attackers fail 

to take majority in the attacked service function. However, 

majority voting-based schemes have high false alarms since 

attacks can always trick the schemes to label benign service 

providers as malicious as long as attackers can take majority 

in each individual service function 

V. CONCLUSION 

In this paper, we have presented the design and 

implementation of IntTest, a novel integrated service 

integrity attestation framework for multitenant software-as-

a-service cloud systems. IntTest employs randomized 

replay-based consistency check to verify the integrity of 

distributed service components without imposing high 

overhead to the cloud infrastructure. IntTest performs 

integrated analysis over both consistency and inconsistency 

attestation graphs to pinpoint colluding attackers more 

efficiently than existing techniques. Furthermore, IntTest 

provides result autocorrect ion to automatically correct 

compromised results to improve the result quality. We have 

implemented IntTest and tested it on a commercial data 

stream processing platform running inside a production 

virtualized cloud computing infrastructure. Our 

experimental results show that IntTest can achieve higher 

pinpointing accuracy than existing alternative schemes. 

IntTest is lightweight, which imposes low-performance 

impact to the data processing services running inside the 

cloud computing infrastructure. 
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